About 506,000 results
Open links in new tab
  1. Multivariable vs multivariate regression - Cross Validated

    Feb 2, 2020 · Multivariable regression is any regression model where there is more than one explanatory variable. For this reason it is often simply known as "multiple regression". In the …

  2. regression - When is R squared negative? - Cross Validated

    Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is …

  3. Linear model with both additive and multiplicative effects

    Sep 23, 2020 · In a log-level regression, the independent variables have an additive effect on the log-transformed response and a multiplicative effect on the original untransformed response:

  4. What's the difference between correlation and simple linear …

    Aug 1, 2013 · Note that one perspective on the relationship between regression & correlation can be discerned from my answer here: What is the difference between doing linear regression on …

  5. correlation - What is the difference between linear regression on y ...

    The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be …

  6. Interpreting Z-Scores of Linear Regression Coefficients

    Jul 11, 2022 · Well, under the hypothetical scenario that the true regression coefficient is equal to 0, statisticians have figured out how likely a given Z-score is (using the normal distribution …

  7. regression - Interpreting the residuals vs. fitted values plot for ...

    Consider the following figure from Faraway's Linear Models with R (2005, p. 59). The first plot seems to indicate that the residuals and the fitted values are uncorrelated, as they should be in a

  8. regression - Trying to understand the fitted vs residual plot?

    Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …

  9. regression - How exactly does one “control for other variables ...

    Residuals I assume that you have a basic understanding of the concept of residuals in regression analysis. Here is the Wikipedia explanation: " If one runs a regression on some data, then the …

  10. regression - Converting standardized betas back to original …

    I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.